
17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 1

Sustainable Software Development: A Comparison of

Tailored Agile Processes

Sophia McNamarah, M.Sc1, Sherrene Bogle2, PhD, Richard Pyne, PhD3
1University of Technology, Jamaica, smcnamarah@utech.edu.jm

2Humboldt State University, sherrene.bogle@humboldt.edu
3Sheridan College, Canada, richard.pyne@sheridancollege.ca

Abstract– Agile methods have the potential for cost effective

and efficient software development thereby facilitating economic

sustainability. A well-defined process is associated with a better

quality software product and a sustainable production flow.

However, agile processes have their shortcomings such as

inadequately detailed user stories and lack of overall (architectural)

design. Such shortcomings can affect the effectiveness of the agile

process. Using principles of process tailoring, three agile processes

are tailored by adding steps that address their weaknesses. The

tailored processes once derived were implemented and tested. The

results of the controlled case study show that the altered extreme

programming resulted in better cost effectiveness and may be a

useful angle for enhancing economic sustainability.

Keywords -- Agile development, Process tailoring, Software

development.

I. INTRODUCTION

Over half of the world’s population live in cities and it is

expected that the number of city dwellers will increase to as

much as 86% of the population in some countries over the

next few decades [1]. Cities provide jobs and economic

development, however growing cities threaten sustainability

because growing urban population mean greater use of energy,

land and other resources [1]. Sustainability, (economical,

ecological or social), refers to the principle of meeting current

needs without interfering with the ability to meet future needs

[2]. Economic sustainability can be enhances if cities can

achieve wealth through improved productivity and

competitiveness [3]. Production and manufacturing processes

such as agile development and lean manufacturing can help to

improve productivity and reduce waste [4].

Over the last decade agile software development

methodologies have become more popular as more companies

have adopted agile practices. Agile methods have the

potential for cost effectiveness and efficiency since they are

lightweight and produce tangible output at a faster rate [5].

This improvement in cost effectiveness and efficiency can

help cities in terms of economic sustainability.

Agile methodologies consist of a range of practices,

which are responsive to change in the development process.

They are based on four underlying principles viz. individuals

and interactions over processes and tools; working software

over comprehensive documentation; customer collaboration

over contract negotiation; and responding to change over

following a plan [6] [7].

II. RELATED WORK

Agile software development methods are characterized by

accommodating changes in the requirements throughout the

development process [8]. They are typically evolutionary

and/or iterative; they permit and accommodate requirements

changes during the development; they select, adjust and

develop functionality and features according to fixed time and

resources; and they have continuous testing and integration

[9]. Agile software development processes include Extreme

Programming (XP), Scrum, Crystal, Feature Drive

Development (FDD), Lean Development and Dynamic

Systems Development method (DSDM) among others. The

fundamental similarity among agile methods is that they were

designed to accommodate change. In addition they tend to be

evolutionary and incremental rather than purely sequential and

they all have less documentation than traditional methods.

Agile methods are better suited for small teams working in the

same location [10] [11] [12]. This actually enhances

economic sustainability since data show that in some of the

leading software developing cities small businesses with small

teams make up the vast majority of software development

companies [13]. Agile processes also have several releases of

the product (which usually evolves over time), continuous

integration and active customer involvement usually

throughout the entire development process.

A. Agile benefits and shortcomings

In addition to their increasing popularity agile methods

provide a range of benefits. Agile methods enable ongoing

day-to-day project tracking and monitoring, real-time updates,

rapid delivery of products, greater interactions and

collaborations between stakeholders, improved

communications, knowledge sharing and quick feedback [14]

[15] [16]. Agile processes can provide a competitive

advantage for small companies since their small releases

provide focus and faster delivery. Small companies need

mechanisms for cost saving and for prudent use of resources.

Yet despite their range of benefits agile processes have

their own shortcomings. These shortcomings sometimes arise

as a result of the organization of the agile process. One such

shortcoming is the use of user stories to capture requirements

for the software. User stories tend to lack sufficient details for

requirements [17] [18] [19]. Another such shortcoming is the Digital Object Identifier (DOI):

http://dx.doi.org/10.18687/LACCEI2019.1.1.458
ISBN: 978-0-9993443-6-1 ISSN: 2414-6390

mailto:smcnamarah@utech.edu.jm

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 2

use of little or no documentation, which can be problematic,

for example it does not permit team members to gain a broad

overview of the system from documentation, it makes things

challenging when new persons join the agile team, it can cause

defects when the software is to evolve or be maintained, it can

lead to difficulty tracing changes and difficulty tracing design

decisions [20] [21] [22] [23].

Another major shortcoming is the little or no architectural

design [18] [24 [25] This too prevents the team from having

an overview of the system and an understanding of how the

components and functionalities fit together and their

dependencies [18]. Barbar [25] stated that many agile

practitioners view the upfront evaluation and design of the

software architecture as too much work and of little value to

customers. However, there has been increasing awareness of

the importance of architectural practices in agile development.

A lack of architecture leads to the inability to reuse code

components, structural problems and maintenance problems of

the software system. There has also been report of quality

issues in the software built using agile methods. This is

reportedly due to the constraint of time (sprints), frequent

releases and the obligation to have working software in a short

time, which can lead to the accumulation of quality issues [26]

[24]. A summary of the shortcomings and challenges with

agile processes are shown below in Table 1.

 TABLE I
Shortcomings and Challenges of Agile Processes

Challenges with Agile

Difficult to estimate effort based on the story
cards and preliminary customer feedback.

[27] [28] [29]

Little or no documentation [21] [20] [22] [23]
[30] [31] [26]

Story cards are usually incomplete, vague, or

lack detail. Story cards inadequate for testing

specifications, do not account for re-factoring
and are liable to being lost. [17] [18]

Non-functional requirements often ignored.
No systematic way to address requirements

dependencies. Difficult to prioritize user

stories. Insufficient requirement verification.
[18] [17] [32] [33]

Simple design equated to least time design,

too abstract or not practiced at all. [18]

Lack of or insufficient architectural design

[18] [24] [25] [34]

Does not support the building of reusable

artefacts [30] [35] [24] [31]

Low level of test coverage [30] [33] [26]

Quality issues due to time, budget and

functionality constraints. [24] [26]

Yet despite their shortcomings agile processes can

provide a competitive advantage for small companies since

their small releases provide focus and faster delivery [5]. For

economic sustainability small companies need mechanisms for

cost saving and for prudent use of resources.

B. Process Tailoring

 Although prescriptive descriptions of software

development methodologies exist, in practice software

development methodologies are often times adjusted or

tailored according to the needs for the project being

implemented [36] [37] [38]. According to [36] it is unusual

for a software method to be used completely in its textbook

form, instead adjustments are made, tailoring to suit the

project being executed. Even quality models like CMMI and

ISO/IEC 12007 consider tailoring of the process as a

requirement for software development companies [38]. Yet

there is little evidence to show tailoring done to specifically

address the shortcomings of the agile process.

 Several examples are provided in the literature of tailored

agile processes. In [39] a hybrid of XP, Scrum and RUP is

proposed. The aim was to integrate the best components

(strengths) of these models while reducing their limitations

thus providing a model that will produce quality software in a

timely and cost effective manner [39]. Each of XP, Scrum and

RUP model, would provide some important characteristic to

the new hybrid model. XP would provide the necessary

software engineering practices, Scrum the managerial

structure and RUP the plan driven and documentation

structure [39]. However, the proposal lacked details about

which specific elements of the models would be included and

which would be left out of the hybrid. Furthermore, the

description of the hybrid is not sufficiently detailed for others

to follow and use the proposed hybrid model; even though

according to the authors the hybrid has not been tested and

will need to be tested, by other developers, in a live

environment [39].

 Cao [40] investigated the issue of how agile

methodologies are adapted for various contexts. The study

used adaptive structural theory (AST) as the theoretical basis

on which to examine the issue. The AST theory links social

structure to information technologies structures, processes and

organizations [40]. The research involved multiple case

studies of four projects executed in different companies under

varying conditions. Cao [40] found that for the small project

agile methodology could be used without adjustments,

however, for the larger more complex projects the agile

practices had to be adjusted in order to efficaciously execute

the projects. In [40], like [41], some waterfall practices were

incorporated for the purpose of better managing the larger

projects. The primary adjustments were abstracted

architectural designs, design and development for reuse,

formal agreements for design and requirements, post hoc and

relevant documentation, pair programming for some aspects or

no pair programming at all, rotation of team members and

roles, shared expertise, agreement on quality and formal costs

and estimates [40].

 In [42] the researcher used a case study approach to

examine a hybrid of RUP and Scrum. Castilla [42] like [39]

began with the posit that by combining the methodologies

their strengths can be maximized and their weaknesses

reduced, thus providing a more optimize process to produce a

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 3

high quality product. In this hybrid the RUP provide the

overarching framework, structure and guide for the

development process, while SCRUM provided the day-to-day

management and organization for project [42]. RUP was used

for the first two stages, (Inception and Elaboration), of the

process and Scrum was used for the last two stages,

(Constuction and Transition), as well as a part of the

Elaboration stage of the process. The hybrid provided several

benefit, for example using RUP’s approach during the first

part of the project provided a common and accurate

understanding of the organization and project requirements in

addition customer’s response and input to project documents

and models could be accommodated due to RUP’s incremental

and iterative approach [42]. In addition using Scrum meant

that sprint goals could be met, yielding frequent product

releases, with timely customer feedback, avoiding delays due

to changing requirements late in the project and hence

reducing risk and project duration [42].

 Mushtaq et al [43] presented a hybrid agile process, which

combined XP engineering features with Scrum managerial

features. The rationale behind the hybrid is that Scrum’s

effective project management framework can be enhanced

with XP’s product development capabilities, thus providing a

process model that can be used to provide high quality

software for varying size projects [43]. The hybrid was

validated using a controlled case study.

 Our project involves a different approach that of

addressing shortcomings that are common across several agile

processes by tailoring the specific element or activity in the

process. The two primary shortcomings identified across the

agile processes are (1) the lack of software architecture and (2)

the lack of detailed requirements. The general structure of the

processes is maintained with the relevant adjustment added at

the appropriate stage.

 III. METHODOLOGY

The altered and unaltered processes were evaluated using

a controlled case study in a similar manner as in [44].

Controlled case study is an approach that combines different

aspects of case study, experiment and action research [45]

[46]. It involves carrying out a project aimed to deliver a

software product to client(s) while constantly collecting

metrics [45]. In this case some of the experimental features in

our project were the randomly selected team members and the

random assignment of process to each team. The action

research features involved the weekly meetings to assess the

project status, to make adjustments were necessary and to

guide teams so that they remained true to the process. The

project instance provided the case study setting for the study.

Metrics related to efficiency, quality and cost effectiveness of

the process were collected for each process throughout the

execution of the project.

The shortcomings addressed were (1) the lack of an

architectural design in some agile processes; and (2) the

inadequately detailed user stories i.e. poor user requirements.

Three agile processes, namely Feature Driven Development

(FDD), SCRUM and Extreme Programming (XP) were

tailored. As a measure of control and for comparison, data

was gathered on the tailored processes and the untailored

processes which were carried out by different sets of student

teams. Detailed requirements and architectural design were

added to the processes that lacked them. Thus detailed

requirement steps were added to Feature Driven Development,

SCRUM and Extreme Programming, while architectural

design step was added to Extreme Programming.

 The controlled case study was conducted in an academic

environment, using students enrolled in a software

development course. The students were randomly assigned to

development teams. Each team was then randomly assigned

one of the unaltered agile method or a tailored agile method.

The agile methods used were (1) Feature Driven Development

(FDD), (2) Feature Driven Development tailored with detailed

requirements (FDD_DReq), (3) Scrum (SCRUM), (4) Scrum

tailored with detailed requirements (SCRUM_DReq), (5)

Extreme programming (XP), Extreme programming tailored

with detailed requirements (XP_DReq), and Extreme

programming tailored with architectural design (XP_AD).

Teams were required to develop the same software product

using the method they were assigned. All teams used the

same programming language for development. The students

were trained with respect to their assigned process and given

written guidelines. In addition weekly meetings were held to

coach team in terms of their assigned process. All groups were

given the same product requirements. Product development

lasted for five weeks, using one week sprints. The teams were

asked to develop the software product using the development

method they were randomly assigned.

Weekly meetings were held with each team. The primary

purpose of these meetings was to determine progress made,

the plan for the coming week, and to evaluate and correct any

deviation from the prescribe process. Data was gathered on the

process on a weekly basis and the software artefacts

generated. Several metrics were used to evaluate the

processes. Emphasis was placed on the defect metrics of the

code since these were objective and factual measures and the

alternative time measures were self reported and therefore

subject to bias and memory. Efficiency was measured using

rate of change from version to version and defects per effort

(effort measured in lines of code and function point). Product

quality was measured in terms of number of defects and

defects per line of code. Cost effectiveness was measured in

terms of lines of code per person month and lines of code per

function point. The metrics were then analysed, and used to

identify the most efficient process, the process that produced

the highest quality product and the most cost effective process.

IV. FINDINGS AND ANALYSIS

Of the six processes used, the product developed using

FDD had the least number of defects with 9, followed by the

product of the FDD_DReq process with 14.

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 4

TABLE 2

MEASURES OF EFFICIENCY

Process Defects LOC Warnings

Man

month

Defect / LOC

per Function

Point

Defect / LOC

per man

month

FDD 9 2007 24 0.468 2.76809E-05 0.009643667

FDD_DReq 14 1476 16 0.468 5.855E-05 0.020398053

SCRUM 22 3223 101 0.468 4.21354E-05 0.014679438

SCRUM_D

Req 21 1862 5 0.468 6.96185E-05 0.024254184

XP 18 1634 28 0.468 6.79995E-05 0.023690133

XP_DReq 30 1637 16 0.468 1.13125E-4 0.039411197

XP_AD 15 1739 17 0.468 5.3245E-05 0.01854978

The product output from the SCRUM process had the most

warnings with 101, but not the most defects. On the other

hand the product generated from SCRUM_DReq had the least

number of warnings with 5, but a relatively high number of 21

defects when compared to the other processes. XP_DReq had

a comparable number of warnings with 16 compared to the

others, but a relatively high number of defects with 30 again

when compared with the others. In fact XP_DReq was the

process with the highest number of defects. The SCRUM

generated product had the most lines of code. The product

generated using FDD had the least defect per line of code per

function point with 2.77 x 10-5 as well as the least defect per

line of code per man month with 9.6 x 10-3. FDD was the

most efficient process followed by SCRUM. Details are

shown in Table 2 above.

Quality was measured in terms of defects per function

point and defects per thousand lines of code. The code and

product generated using the FDD method had the lowest

number of defects with 9, lowest defects per function points of

0.06 and the lowest defects per thousand lines of code of 4.48.

This was followed by the code generated by SCRUM.

TABLE 3
MEASURES OF QUALITY

Process Defects LOC

Defect per

function

point

Defect per

KLOC

final

version

FDD 9 2007 0.06 4.48

FDD_DReq 14 1476 0.09 9.49

SCRUM 22 3223 0.14 6.83

SCRUM_D

Req 21 1862 0.13 11.28

XP 18 1634 0.11 11.02

XP_DReq 30 1637 0.19 18.33

XP_AD 15 1739 0.09 8.63

On the other hand the output from XP_DReq had the

highest number of defects, defects per function point of 0.19

and defects per thousand lines of code of 18.33. The products

generated from FDD_DReq and XP_AD had similar defects

per function point of 0.09 yet differed in terms of defects per

thousand lines of code with 9.49 and 8.63 respectively. These

results are shown in Table 3 above.

In terms of cost effectiveness the SCRUM process had the

highest lines of code per person month with 6886 and per

function point with 19.90 indicating that the SCRUM process

was the most cost effective.
TABLE 4

MEASURES OF COST EFFECTIVENESS

Process LOC

Man

month

LOC

per

person

month

LOC

per

function

point

FDD 2007 0.468 4288.46 12.39

FDD_DReq 1476 0.468 3153.85 9.11

SCRUM 3223 0.468 6886.75 19.90

SCRUM_DReq 1862 0.468 3978.63 11.49

XP 1634 0.468 3491.45 10.09

XP_DReq 1637 0.468 3497.86 10.10

XP_AD 1739 0.468 3715.81 10.73

This was followed by FDD with 4288 lines of code per person

month and then SCRUM_DReq with 3978. It appears that

SCRUM processes (altered and unaltered) are fairly cost

effective. FDD_DReq was the least cost effective with 9.11

for lines of code per function point. The cost effectiveness of

the three extreme programming processes were fairly similar,

i.e. 10.09, 10.10 and 10.73 in terms of lines of code per

function point this is interesting since none of the other

processes had a similar pattern. This may be an interesting

angle to pursue further investigation of extreme programming

with respect to economic sustainability in small software

development companies. The detailed for the cost

effectiveness metrics results are shown in Table 4 above.

 Of all the processes only the altered XP_AD process

produced better results for efficiency. This is in keeping with

the literature [18] [24] [25] and [34] that indicate that an

architectural design provides general direction for the product

team by giving an overview of the general project direction.

This result may be in support of the upfront architectural

design in extreme processing process. The altered processes

FDD_DReq and XP_AD had similar quality measures in

terms of defects per function point. This could be because

detailed requirements and up front architectural design can

help to clarify software features and functionalities. Both the

altered and unaltered SCRUM processes had similar measures

which could mean that quality in terms of function points for

SCRUM can be fairly consistent. So there is some indication

of improved quality with more detailed requirements.

Surprisingly, except for extreme programming the unaltered

processes are more cost effective in terms of lines of code per

function point. Perhaps this is an indication that making

changes to the process may require the use of more resources.

V. CONCLUSION

Altering an agile process can produce some useful

benefits. The FDD process seemed to have outperformed all

the others processes. In addition the altered process

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 5

FDD_DReq performed fairly well. This is in keeping with the

nature of feature driven development. Architectural design

and detailed requirement can help to produce greater quality

software. The altered versions of extreme programming were

more cost effective, and this may be an area for further

investigation especially with respect to improving economic

sustainability in software development. The project could be

repeated to verify these results.

REFERENCES

[1] M. Höjer and J. Wangel, “Smart Sustainable Cities: Definition and

Challenges”. In Hilty, L.M., Aebischer, B. (eds) ICT Innovation for
Sustainability. Advances in Intelligent Systems and Computing: Springer

International Publishing, 2014. pp. 333-349.

[2] F. Russo and A. Comi, “City characteristics and urban goods movements:
A way to environmental transportation system in a sustainable city”.

Procedia - Social and Behavioral Sciences, vol 39, 2012. pp. 61–73.

[3] N. Khansari, A. Mastashari and M. Mansouri, “Impacting Sustainable
Behaviour and Planning in Smart City”, International Journal of

Sustainable Land Use and Urban Planning. Vol. 1 No. 2, 2013. pp. 46-61.

[4] T. Klein, G. Reinhart, “Towards agile engineering of mechatronic systems
in machinery and plant construction”. Procedia Cirp 2016, vol 52. pp. 68–

73.

[5] Z. Galvina, D. Smite, “Software Development Processes in Globally
Distributed Environment”, Scientific Papers, University of Latvia, 2011.

Vol. 770, Computer Science and Information Technologies

[6] L. Williams and A. Cockburn, “Agile Software Development: It’s about
Feedback and Change”, Computer, IEEE Computer Society, June 2003,

pp. 39-43

[7] G. Kapitsaki and M. Christou, “Learning from the Current Status of Agile
Adoption” in J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551,

2015. pp. 18–32.

[8] M. Rychl´y and P. Tich´a, “A Tool for Supporting Feature-Driven
Development” in Balancing Agility and Formalism in Software

Engineering, eds B. Meyer, J.R. Nawrocki, and B. Walter, Springer,

Germany, 2008. pp. 196–207
[9] C. Ferreira and J. Cohen, “Agile Systems Development and Stakeholder

Satisfaction: A South African Empirical Study”, SAICSIT 2008, October

2008,
[10] K. Rao, G. Naidu, and P. Chakka, “A study of the Agile Software

Development Methods”, Applicability and Implications in Industry, in

International Journal of Software Engineering and Its Applications, vol. 5
no. 2, April 2011

[11] D. Turk, R. France and B. Rumpe, “Assumptions Underlying Software

Development Processes”, in Journal of Database Management, vol 16, no.
4, 2005, pp 62-87

[12] Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J., Agile software

development methods. Review and analysis. Espoo 2002. VTT
Publications 478

[13] V. Moreno and J. Pinheiro, “Influence of Technical and Management

Capacities on the Performance of Brazilian Software Development Firms”
in Proceedings Annual Workshop of the AIS Special Interest Group for

ICT in Global Development. 2010

[14] F. Kamei, G. Pinto, B. Cartaxo and A. Vasconceios, “On the
Benefits/Limitations of Agile Software Development: An Interview Study

with Brazilian Companies”, in Proceedings of the 21st International

Conference on Evaluation and Assessment in Software Engineering
(EASE), June 2017

[15] K. Petersen and C. Wohlin, “A comparison of issues and advantages in

agile and incremental development between state of art and an industrial
case”, Journal of Systems and Software, 2009

[16] R. Shankarmani, R. Pawar, S. Mantha and V. Babu, “Agile Methodology
Adoption: Benefits and Constraints”. International Journal of Computer

Applications. vol 58. 2012. pp. 31-37

[17] A. Patel, A. Seyfi, M. Taghavi, C. Wills, L. Na, R. Latih, S. Misra, “A
Comparative Study of Agile, Component-Based, Aspect-Oriented and

Mashup Software Development Methods”, Technical Gazette, 19(1),

2012. pp. 175-189.
[18] B. Kongyai and E. Edi, “Adaptation of Agile Practices : A Systematic

Review and Survey”. 2011

[19] M. Qureshi, J., Ikram, “Proposal of Enhanced Extreme Programming

Model”, I.J. Information Engineering and Electronic Business, vol 1

2015. pp. 37-42

[20] N. Uikey, U, Suman, A. Ramani, “A Documanted Approach in Agile

Software Development”, International Journal of Software Engineering

(IJSE), vol. 2 issue 2, 2011. pp. 13-22
[21] A. Moniruzzaman, and S. Hossain, “Comparative Study on Agile

Software Development Methodologies”, Global Journal of Computer

Science and Technology, vol. 13 issue 8, 2013. pp. 5-18.
[22] R. Hoda, J. Noble and S. Marshall, “Documentation strategies on agile

software development projects”, International Journal on Agile and

Extreme Software Development, Vol 1, No. 1, 2012. pp. 23-37, 2012
[23] J. Nuottila, K. Aaltonen, and J. Kujala, “Challenges of adoptin agile

methods I a public organization”, International Journal of Information

Systems and Project Management, Vol. 4, No. 3, 2016, pp 65-85
[24] C. Álvarez, “Overcoming the Limitations of Agile Software Development

and Software Architecture”. Master’s Thesis, Blekinge Institute of

Technology, September 2013.
[25] M. Babar, “An Exploratory Study of Architectural Practices and

Challenges in Using Agile Software Development Approaches”, in Joint

Working IEEE/IFIP Conf. on Software Architecture & European Conf. on

Software Architecture, 2009. pp. 81-90.
[26] A. Majeed, “Issues and Challenges in Scrum Implementation”,

International Journal of Scientific & Engineering Research, Vol 3, No. 8,
Aug 2012. pp. 1-4

[27] A. Raslan, N. Darwish, (2018), “An Enhanced Framework for Effort

Estimation of Agile Projects”, International Journal of Intelligent
Engineering and Systems, Vol. 11, No. 3, 2018. pp 205-214

[28] M. Abouelela, L. Benedicenti, L., (2010), Bayesian Network Based XP

Process Modelling, International Journal of Software Engineering &
Applications, Vol. 1, No. 3, 2010. pp. 1-15

[29] K. Jammalamadaka, R. Krishna, “Agile Software Development and

Challenges”, International Journal of Research in Engineering and
Technology, Vol 02, Issue 08, Aug. 2013. pp. 125-129

[30] T. Sekgweleo, “Understanding Agile System Development

Methodologies”, International Journal of Advanced Research in
Computer Science and Software Engineering, Vol. 5, Issue 7, July 2015.

pp. 18-24
[31] Y. Leau, W. Loo, W. Than, S. Tan, “Software Development Life Cycle

Agile vs. Traditional Approaches”, International Conference on

Information and Network Technology, IPCSIT, vol. 37, 2012. pp. 162-
167

[32] A. Martakis, M. Daneva, "Handling requirements dependencies in agile

projects: A focus group with agile software development
practitioners”, IEEE 7th International Conference on Research Challenges

in Information Science (RCIS), 2013. pp. 1-11.

[33] R. Anand. M. Dinakaran, “Issues in Scrum Agile Development Principles
and Practices in Software Development”, Indian Journal of Science and

Technology, Vol. 8 (35), 2015. pp. 1-5

[34] C. Prause, Z. Durdik, “Architectural Design and Documentation: Waste in
Agile Development?”, in Proceedings of 2012 International Conference

on Software and System Process (ICSSP), Zurich, Switzerland, 2012. pp.

130-134
[35] A. Mahanti, “Challenges in Enterprise Adoption of Agile Methods – A

Survey”, Journal of Computing and Information Technology (CIT), Vol.

14 No. 3, 2006. pp. 197-206
[36] K. Conboy and B. Fitzgerald, “Method and Developer Characteristics for

Effective Agile Method Tailoring: A Study of XP Expert Opinion”, ACM

Transactions on Software Engineering and Methodology, Vol. 20 No. 1,
Article 2, 2010. pp. 2:1-2:30

[37] A. Campanelli, “A Tailoring Criteria Model for Agile Practices

Adoption”, Masters Thesis, Universidada Fumec, 2015
[38] R. Santos, T. Oliveira, F. Abreu, “Mining Software Development

Variations”, SAC’15, , Salamanca, Spain. April 13-17, 2015.

[39] G. Ahmad, T. Soomro and M. Brohi, “XSR: Novel Hybrid Software
Development Model (Integrating XP, Scrum & RUP)”, International

Journal of Soft Computing and Engineering (IJSCE), Vol. 2 Issue 3,

2014. pp. 126-130
[40] L. Cao, K. Mohan, P. Xu, B. Ramesh, “A Framework for Adopting Agile

Development Methodologies”, in European Journal of Information

Systems, vol 18, 2009. pp. 332-343

17th LACCEI International Multi-Conference for Engineering, Education, and Technology: “Industry, Innovation, And

Infrastructure for Sustainable Cities and Communities”, 24-26 July 2019, Jamaica. 6

[41] E. Burman, “Agile in Action: Hybrid Methodologies in Practise”. Master

Thesis, Umeå, 2015

[42] D. Castilla, “A Hybrid Approach Using RUP and Scrum as a Software

Development Strategy”, Masters Thesis, University of North Florida,

2014

[43] Z. Mushtaq, M. Qureshi. "Novel Hybrid Model: Integrating Scrum and
XP", IJITCS, vol.4, no.6, 2012. pp. 39-44

[44] G. Rasool, S. Aftab, S. Hussain and D. Streitferdt, “eXRUP: A Hybrid

Software Development Model for Small to Medium Scale Projects”,
Journal of Software Engineering and Applications, vol 6, 2013. pp. 446-

457

[45] O. Salo and P., Abrahamsson, “Empirical Evaluation of Agile Software
Development: the Controlled Case Study Approach”, in the Proceedings

of the 5th International Conference on Product Focused Software Process

Improvement, Keihanna-Plaza, Kansai Science City in Kyoto-Nara, Japan
[46] M. Siniaalto, P. Abrahamsson, P. “A comparative case study on the

impact of test-driven development on program design and test coverage”.

In Proceedings of First International Symposium on Empirical Software
Engineering and Measurement (ESEM), 2007. pp. 275-284.

.

