Algorithms to estimation of size and shape tomato using Artificial Vision Techniques

dc.contributor.authorJiménez López, Fabián Rolando
dc.contributor.authorNiño Pacheco, Wolffang David
dc.contributor.authorJiménez López, Andrés Fernando
dc.date.accessioned2019-08-17T03:07:59Z
dc.date.accessioned2022-02-22T12:04:24Z
dc.date.available2019-08-17T03:07:59Z
dc.date.available2022-02-22T12:04:24Z
dc.date.issued2019-07
dc.description.abstractThis paper describes the development of estimation algorithms for the size and shape of tomato fruits, implemented on a portable electronic system used in greenhouses, with the purpose to classify and collect of tomatoes milano and chonto type. The algorithms were implemented in a Raspberry-Pi embedded card through the use of free software libraries (Python, OpenCV, Pillow and Scikit-Image) and using a Pi-Camera for real-time processing, taking into account the parameters of classification defined in national (NTC1103-1) and international (USDA) standards. Were applied classification algorithms based on Canny to estimate the size of the tomato fruit, as well as techniques based on estimation of the eccentricity and statistical moments descriptors for the measurement of the shape, which were evaluated with a performance superior to 90 %. Classification techniques of tomato shape and size using artificial vision overcame subjective techniques of visual and tactile type classification carried out by farmers and specialized technicians.en_US
dc.description.countryColombiaen
dc.description.institutionUniversidad Pedagógica y Tecnológica de Colombiaen
dc.description.trackSoftware Engineering, Telecommunications, Cybersecurity and Computational toolsen
dc.identifier.isbn978-958-52071-4-1
dc.identifier.issn2414-6390
dc.identifier.otherhttp://laccei.org/LACCEI2019-MontegoBay/meta/FP5.html
dc.identifier.urihttp://dx.doi.org/10.18687/LACCEI2019.1.1.5
dc.identifier.urihttps://axces.info/handle/10.18687/20190101_5
dc.journal.referatopeerReview
dc.language.isoEnglishen_US
dc.publisherLACCEI, Inc.en_US
dc.rightsLACCEI License
dc.rights.urihttps://laccei.org/blog/copyright-laccei-papers/
dc.subjectFruit Classification Systemen_US
dc.subjectCanny Algorithmen_US
dc.subjectEccentricity Algorithmen_US
dc.subjectArtificial Vision Techniquesen_US
dc.titleAlgorithms to estimation of size and shape tomato using Artificial Vision Techniques
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FP5.pdf
Size:
1.26 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
64 B
Format:
Plain Text
Description: