Long and Short Term Energy Demand Forecasting using XGBoost Models

dc.contributor.authorRobles, Jose
dc.contributor.authorSotelo-Valer, Freedy
dc.contributor.authorNahui-Ortiz, Johnny
dc.contributor.authorLopez-Cordova, Jorge
dc.date.accessioned2021-08-17T03:07:59Z
dc.date.accessioned2022-02-22T12:15:17Z
dc.date.available2021-08-17T03:07:59Z
dc.date.available2022-02-22T12:15:17Z
dc.date.issued2021-07
dc.description.abstractAs part of the technical studies in energy demand required by regulatory entities in Peru, this paper proposes the use of XGBoost Linear and Decision Trees models based on econometric long and short term variables for energy demand forecast. Considering that data of energy demand per year is only available since 1980, resulting in a small dataset, Leave-One-Out Cross Validation method was used in order to measure the performance of the models with unseen data. After training all models, in terms of econometrics, models based on long term variables shows to be more robust than models with short term ones. In addition, Decision Trees shows a better performance than Linear Models with a noticeable difference in the coefficient of determination for both training and test data.en_US
dc.description.countryPeruen
dc.description.institutionUniversidad Nacional de Ingenieríaen
dc.description.trackEnergy, Water and Sustainable Engineeringen
dc.identifier.isbn978-958-52071-8-9
dc.identifier.issn2414-6390
dc.identifier.otherhttp://laccei.org/LACCEI2021-VirtualEdition/meta/FP219.html
dc.identifier.urihttp://dx.doi.org/10.18687/LACCEI2021.1.1.219
dc.identifier.urihttps://axces.info/handle/10.18687/20210101_219
dc.journal.referatopeerReview
dc.language.isoEnglishen_US
dc.publisherLACCEI Inc.en_US
dc.rightsLACCEI License
dc.rights.urihttps://laccei.org/blog/copyright-laccei-papers/
dc.subjectEnergy Demand Forecasten_US
dc.subjectMachine Learningen_US
dc.subjectXGBoosten_US
dc.subjectCross Validationen_US
dc.subjectDecision Treesen_US
dc.subjectEconometric Modelsen_US
dc.subjectArtificial Intelligenceen_US
dc.titleLong and Short Term Energy Demand Forecasting using XGBoost Models
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FP219.pdf
Size:
980.36 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
64 B
Format:
Plain Text
Description: