Evaluate the next nanobubble movement with artificial intelligence

dc.contributor.authorHuarote Zegarra, Raúl Eduardo
dc.contributor.authorValverde, Jhonny
dc.contributor.authorVega Lujan, Yensi
dc.contributor.authorCastañeda Hilario, Aradiel
dc.contributor.authorFlores Masías, Edward José
dc.contributor.authorLarios Franco, Alfredo Cesar
dc.contributor.authorVargas Huaman, Jhonatan Isaac
dc.date.accessioned2021-08-17T03:07:59Z
dc.date.accessioned2022-02-22T12:15:52Z
dc.date.available2021-08-17T03:07:59Z
dc.date.available2022-02-22T12:15:52Z
dc.date.issued2021-07
dc.description.abstractThis research supports solving the problem of how to know the next movement of the nanobubble, two methods will be used to represent the behavior of air nanobubbles in liquids, such as the correlation of data expressed in an equation and the backpropagation in learning its route. To obtain the data, technological tools were used to visualize the movement. of the air nanobubbles on a scale of 10-9 m in diameter. The images of the nanobubbles were obtained using high-power cameras. The algorithms used were, based on the processing of digital images to obtain the positions and follow them, the correlation of data to generate the equation and the neural network to learn their movements. In conclusion, the behavior of nanobubbles in water was identified, generating a specific movement pattern of y = 9E-06x3 - 0.0034x2 + 1.6831x + 299.25; with a correlation of: R² = 0.9976, and it was possible to learn these movements generating the appropriate synaptic weights with 99.8% certainty in their route.en_US
dc.description.countryPeruen
dc.description.institutionUniversidad Nacional Tecnológica de Lima Suren
dc.description.trackEngineering Infrastructure, Construction Engineering, Logistics and Transportation, and Qual. Assur.en
dc.identifier.isbn978-958-52071-8-9
dc.identifier.issn2414-6390
dc.identifier.otherhttp://laccei.org/LACCEI2021-VirtualEdition/meta/FP362.html
dc.identifier.urihttp://dx.doi.org/10.18687/LACCEI2021.1.1.362
dc.identifier.urihttp://axces.info/handle/10.18687/20210101_362
dc.journal.referatopeerReview
dc.language.isoEnglishen_US
dc.publisherLACCEI Inc.en_US
dc.rightsLACCEI License
dc.rights.urihttps://laccei.org/blog/copyright-laccei-papers/
dc.subjectpathen_US
dc.subjectair nanobubblesen_US
dc.subjectpredicten_US
dc.subjectdigital image processingen_US
dc.subjectbackpropagationen_US
dc.titleEvaluate the next nanobubble movement with artificial intelligence
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FP362.pdf
Size:
1.32 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
64 B
Format:
Plain Text
Description: