• Login
    View Item 
    •   AXCES Home
    • Proceedings
    • 2020 LACCEI - Virtual Edition
    • View Item
    •   AXCES Home
    • Proceedings
    • 2020 LACCEI - Virtual Edition
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Three-dimensional numerical simulation of debris flow using the finite volume method

    Thumbnail
    View/Open
    FP573.pdf (1.683Mb)
    Date
    2020-07
    Author
    Figueroa-León, Ruben A.
    Quillos-Ruiz, Serapio A.
    Metadata
    Show full item record
    Abstract
    Abstract– OpenFOAM free software uses computational fluid dynamics through finite volume method; in adition, works the debris flow model with 98% precision in mesh refinement tests, applying the LES turbulence model: oneEqEddy. Likewise, the advance of the flow was predicted in a more consistent way, getting a behavior closer to the real one of the fluid under study comparing with other methods. In experimental model, average speeds between 2.5784 m/ s and 2.1076 m/s were obtained, and a range R2 determination coefficients of 0.997 to 0.9903; and in the numerical model an average speed of 2.0572 m/s to R2 of 0.974 were obtained, being the statistically similar slopes, providing the numerical model a good level of reliability to be used to simulate different behaviors of debris movement in ravines on a natural scale with accurate predictions. The three-dimensional model of debris flows reproduced the wavefront velocities with 85% precision, coinciding in shape and time in each control section of the physical model; Similarly, turnbuckles have gotten 80% accuracy, reach, and displacement of the debris flow within the ejection cone. The results of the experimental model and of the variable simulations stablish possible to model the debris flows in complex terrains with good precision.
    URI
    http://dx.doi.org/10.18687/LACCEI2020.1.1.573
    http://axces.info/handle/10.18687/20200101_573
    URI Others
    http://laccei.org/LACCEI2020-VirtualEdition/meta/FP573.html
    Copyright
    https://laccei.org/blog/copyright-laccei-papers/
    Track
    Energy, Water and Sustainable Engineering
    Collections
    • 2020 LACCEI - Virtual Edition

    Support by DSpace software.
    Copyright © 2002-2022 . Powered by LACCEI Inc.
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Support by DSpace software.
    Copyright © 2002-2022 . Powered by LACCEI Inc.
    Contact Us | Send Feedback
    Theme by 
    Atmire NV