Modeling and prediction of a multivariate photovoltaic system, using the multiparametric regression model with Shrinkage regularization and eXtreme Gradient Boosting.
Loading...
Files
Date
Journal Title
Journal ISSN
Volume Title
Publisher
LACCEI Inc.
Abstract
Alternative energy systems have more frequently been acquiring a fundamental role in the generation of energy that promotes the development of countries in social, economic, and environmental terms. For the efficient operation of photovoltaic systems (SFV), it is necessary to make predictions about their operation, turning them into intelligent systems. The present work proposes the collection, modeling, and prediction of a multivariate SFV, using a multiparametric regression model, presenting five regression models with machine learning: three that use Shrinkage regularization and two that use eXtreme Gradient Boosting (XGBoost). Results obtained, we note that the five predictions have determination coefficients higher than 99.47%; being XGBoost with n_estimators = 500 which reduces the root mean square error by about 55%. Likewise, in all cases, the test times are less than 1 second. The results were validated so that they not only have mathematical significance, but are also real, showing that XGBoost with n_estimators = 10 does not meet the five validation conditions, so this prediction model should not be considered.
Description
Keywords
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as LACCEI License