Modeling and prediction of a multivariate photovoltaic system, using the multiparametric regression model with Shrinkage regularization and eXtreme Gradient Boosting.

dc.contributor.authorHuaquipaco Encinas, Saul
dc.contributor.authorCruz, Jose
dc.contributor.authorBeltran Castañon, Norman Jesus
dc.contributor.authorPineda, Ferdinand
dc.contributor.authorRomero, Christian
dc.contributor.authorChura Acero, Julio Fredy
dc.contributor.authorMamani Machaca, Wilson
dc.date.accessioned2021-08-17T03:07:59Z
dc.date.accessioned2022-02-22T12:17:09Z
dc.date.available2021-08-17T03:07:59Z
dc.date.available2022-02-22T12:17:09Z
dc.date.issued2021-07
dc.description.abstractAlternative energy systems have more frequently been acquiring a fundamental role in the generation of energy that promotes the development of countries in social, economic, and environmental terms. For the efficient operation of photovoltaic systems (SFV), it is necessary to make predictions about their operation, turning them into intelligent systems. The present work proposes the collection, modeling, and prediction of a multivariate SFV, using a multiparametric regression model, presenting five regression models with machine learning: three that use Shrinkage regularization and two that use eXtreme Gradient Boosting (XGBoost). Results obtained, we note that the five predictions have determination coefficients higher than 99.47%; being XGBoost with n_estimators = 500 which reduces the root mean square error by about 55%. Likewise, in all cases, the test times are less than 1 second. The results were validated so that they not only have mathematical significance, but are also real, showing that XGBoost with n_estimators = 10 does not meet the five validation conditions, so this prediction model should not be considered.en_US
dc.description.countryPeruen
dc.description.institutionUniversidad Nacional del Altiplanoen
dc.description.trackEnergy, Water and Sustainable Engineeringen
dc.identifier.isbn978-958-52071-8-9
dc.identifier.issn2414-6390
dc.identifier.otherhttp://laccei.org/LACCEI2021-VirtualEdition/meta/FP557.html
dc.identifier.urihttp://dx.doi.org/10.18687/LACCEI2021.1.1.557
dc.identifier.urihttp://axces.info/handle/10.18687/20210101_557
dc.journal.referatopeerReview
dc.language.isoEnglishen_US
dc.publisherLACCEI Inc.en_US
dc.rightsLACCEI License
dc.rights.urihttps://laccei.org/blog/copyright-laccei-papers/
dc.subjectModelingen_US
dc.subjectPredictionen_US
dc.subjectPhotovoltaicen_US
dc.subjectShrinkageen_US
dc.subjectRegularizationen_US
dc.subjectXGBoosten_US
dc.titleModeling and prediction of a multivariate photovoltaic system, using the multiparametric regression model with Shrinkage regularization and eXtreme Gradient Boosting.
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
FP557.pdf
Size:
1.17 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
64 B
Format:
Plain Text
Description: